SYNTHESIS OF A NEW COPPER ANTIMONY OXIDE, ${\rm Cu_9^{Sb}_{4}^{O}}_{19}$, BY SOLID STATE REACTION BETWEEN CuO AND ${\rm CuSb_{2}O_{6}}$ UNDER HIGH PRESSURE

Shiro SHIMADA,* Kohei KODAIRA, and Toru MATSUSHITA

Department of Applied Chemistry, Faculty of Engineering,

Hokkaido University, Sapporo 060

A new copper antimony oxide was synthesized by solid state reaction between CuO and ${\rm CuSb}_2{\rm O}_6$ in a 3.5:1 mole ratio at 1000 °C and 10 kbar and was found to have the composition ${\rm Cu}_9{\rm Sb}_4{\rm O}_{19}$ by X-Ray fluorescence analysis. The new oxide could be indexed on the basis of a body-centred cubic unit cell with a_o=9.620 Å.

Compounds of pentavalent antimony oxide with copper oxide are rare. The only copper antimony oxide is the compound, $\operatorname{CuSb}_2\mathsf{O}_6$, which has a deformed trirutile structure. In a previous paper, it has been reported that a new copper(I) antimony oxide, $\operatorname{Cu}_4\operatorname{SbO}_4$, was prepared by a thermal decomposition of $\operatorname{CuSb}_2\mathsf{O}_6$ and also by a solid state reaction of CuO with $\operatorname{CuSb}_2\mathsf{O}_6$ in the mole ratio 7:1. Since the preparation of $\operatorname{Cu}_4\operatorname{SbO}_4$, by this reaction requires a long heat treatment of over 24 h at 1120-1150 °C, the high pressure reaction was thought to be facilitated. This high pressure reaction fortuitously leads to the formation of another new copper antimony oxide of $\operatorname{Cu}_9\operatorname{Sb}_4\operatorname{O}_{19}$. This paper reports the synthesis of a new copper antimony oxide by the solid state reaction between CuO and $\operatorname{CuSb}_2\operatorname{O}_6$ under high pressure of 10 kbar.

The starting materials were copper(II) oxide (Kanto Chem.) and antimony(III) oxide (Wako Chem.), both of reagent grade. The CuO sample was fired at 500 °C for 2 h in air, then sieved to < 325 mesh. The $\mathrm{Sb_2O_3}$ sample which contained 1 wt% $\mathrm{H_2O}$ was dehydrated before reaction by heating in air to 380 °C. An equimolecular mixture of the oxides was heated at a rate of 5 °C/min up to 1000 °C to prepare $\mathrm{CuSb_2O_6}$. Powders of CuO and $\mathrm{CuSb_2O_6}$ in mole ratios of 2-7 were mixed and 40-50 mg charges were pressed into pellets, then placed into a platinum capsule. The pellets were reacted for 2 h in a piston cylinder type high pressure apparatus at 900-1250 °C and 10 kbar. The sample was subsequently quenched to room temperature before the pressure was released. The products obtained in the reaction were identified by X-Ray powder diffraction.

The existence of a new copper antimony oxide formed by the high pressure reaction of CuO with ${\rm CuSb}_2{\rm O}_6$ in the mole ratio 7:1 at 1120-1150 °C and 10 kbar was confirmed by X-Ray analysis. Since the phases CuO, ${\rm CuSb}_2{\rm O}_6$, and ${\rm Cu}_4{\rm SbO}_{4.5}$ were present in the reaction product, further high pressure reactions were carried out with various ratios of ${\rm CuO/CuSb}_2{\rm O}_6$ =2-7 at 900-1250 °C to determine the conditions

under which the new oxide can be produced in a pure state. The reaction of CuO with ${\rm CuSb}_2{\rm O}_6$ in the ratio 7:1 at 1150-1250 °C gave almost the same result as at 1120-1150 °C. The reaction with the ratio 7:1 at 1000 °C produced the new oxide together with residual CuO but containing neither ${\rm CuSb}_2{\rm O}_6$ nor ${\rm Cu}_4{\rm SbO}_{4.5}$. No reaction occurred at 900 °C. To eliminate the unreacted copper(II) oxide, high pressure reactions with mole ratios of less than 5.0 were conducted. Decreasing the mole ratio from 5.0 to 4.0 leaded to a decrease of unreacted CuO but a further decreased to 3.0 resulted in an appearance of ${\rm CuSb}_2{\rm O}_6$ instead of CuO. More ${\rm CuSb}_2{\rm O}_6$ was found with the ratio of 2.0. Thus, it is evident that the new oxide can be produce in a pure state by using a ratio between 4.0 and 3.0, and a complete absence of CuO and ${\rm CuSb}_2{\rm O}_6$ was found when the ratio of 3.5 was used.

Since the new oxide was found to be hardly attacked by hydrochloric acid solution, the new oxide obtained at a mole ratio of 4.0 was successfully purified by dissolving the unreacted CuO by HCl, giving pale greenish-yellow powders. X-Ray diffraction data for the new oxide are given in Table 1. The pattern could be indexed on the basis of a cubic unit cell with $a_0=9.620$ Å and the systematic absence (h+k+l=2n+1) shows this cell to have a body-centred symmetry. X-Ray fluorescence analysis showed that the mole ratio of Cu/Sb in the new oxide is about 2.25, corresponding to the composition, $Cu_9Sb_4O_{19}$, which is consistent with the result that the new oxide can be produced in a pure state with the ratio of 3.5 at 1000 °C.

				J 4 1J			
dobsd	d calcd	(hkl)	I/I。	d obsd	dcalco	(hkl)	I/I。
4.824	4.810	200	13	1.702	1.701	440	31
3.936 3.408	3.927 3.401	211 220	11 6	1.650	1.650	{433 530	1
3.078 2.781	3.042 2.778	310 222	1 100	1.603	1.603	{442 600	4
2.574 2.408	2.571 2.405	321 400	1 28	1.560	1.561	{532 611	3
2.271	2.267	${330 \choose 411}$	1	1.521 1.484	1.521 1.484	620 541	2 5
2.154	2.151	420	4	1.450	1.450	622	23
2.053	2.051	332	7	1.418	1.418	631	3
1.966	1.964	422	6	1.388	1.389	444	4
1.889	1.887	{431 510	9	1.360	1.360	{543 {550	4
1.757	1.756	521	2			710	

Table 1. X-Ray diffraction data for the new copper antimony oxide, $Cu_9Sb_4O_{19}$. $a_o=9.620$ A $(CuK\alpha_1)$

References

- 1) A. Bystrom, B. Hok, and B. Mason, Ark. Kemi. Mineral. Geol., <u>15B</u>, 1 (1941).
- 2) S. Shimada and K.J.D. MacKenzie, Thermochim. Acta, 56, 73 (1982).